Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan D. Crane* and Richard P. Bunce

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
R factor $=0.051$
$w R$ factor $=0.131$
Data-to-parameter ratio $=34.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Bromo-1,3-dipyrrolidin-1-ylpropane-1,3-dionate bromide

At 150 K , the title compound, $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, is a salt comprising monoprotonated 2-bromo-1,3-dipyrrolidin-1-yl-propane-1,3-dione cations and bromide anions. In the cation, the acidic proton is intramolecularly hydrogen-bonded between the carbonyl O atoms and the positive charge is delocalized over both amide groups.

Comment

The title compound, (I), crystallizes as a salt comprising monoprotonated 2-bromo-1,3-dipyrrolidin-1-ylpropane-1,3dione cations and bromide anions (Fig. 1). In the cation, the location of the acidic proton, H1, between the carbonyl O atoms was identified in a difference Fourier map, which also indicated that H1 formed a non-symmetrical hydrogen bond disordered over the two equivalent positions dictated by the crystallographic mirror symmetry. This description was confirmed by the successful free refinement of the positional parameters of H1 to give a satisfactory hydrogen-bond geometry (Table 3). The delocalization of the positive charge over the amide groups is confirmed by the long $\mathrm{C}=\mathrm{O}$ distance of 1.281 (5) \AA and the short $\mathrm{C}-\mathrm{N}$ distance of 1.301 (5) \AA.

The interatomic contact distances for the bromide anion Br 2 (Table 2) show that the shortest inter-ion interactions are within a one-dimensional alternating sequence of cations and anions parallel to the crystallographic c axis (Fig. 2). The short $\mathrm{Br} 2 \cdots \mathrm{Br} 1^{\mathrm{ii}}$ [symmetry code: (ii) $x, y, 1+z$] distance of 3.1049 (8) \AA is associated with a long $\mathrm{C} 1-\mathrm{Br} 1$ distance of 2.001 (7) \AA, and both of these features are consistent with a weak $\mathrm{C} 1-\mathrm{Br} 1$ bond and some cationic character for Br 1 . The close contacts between Br 2 and $\mathrm{C} 1, \mathrm{C} 2$ and $\mathrm{H} 1 A$ rather than H 1 also indicate that the charge on the cation is associated with the central C atoms of the diamide moiety rather than the formal site of protonation.

Experimental

The title compound, (I), was prepared by the reaction of 1,3 -dipyr-rolidin-1-ylpropane-1,3-dione (Wilson \& Weingarten, 1970) with bromine in dichloromethane at room temperature, according to the method of Malmberg et al. (1983). Suitable crystals were grown by recrystallization from dichloromethane. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 16.05$ (br s, 1H, OH), $5.88(s, 1 \mathrm{H}, \mathrm{CH}), 3.96$ (br s, $4 \mathrm{H}), 3.67(t, 4 \mathrm{H}), 2.14(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H})$; MS (EI, m / z): 289;

Received 9 February 2004 Accepted 16 February 2004 Online 20 February 2004

Figure 1

View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitary size. The symmetry code is as in Table 1.

Figure 2
The packing of (I), viewed down the crystallographic c axis. For clarity, only one of the two equivalent sites for the intramolecularly hydrogenbonded atom H 1 is shown.
analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 35.70, $\mathrm{H} 4.90, \mathrm{~N} 7.57 \%$; found: C 35.67, H 4.95, N 7.37\%.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=370.09$
Orthorhombic, Cmc_{2}
$a=13.4235$ (13) Å
$b=12.9358$ (10) \AA
$c=8.2935(6) \AA$
$V=1440.1(2) \AA^{3}$
$Z=4$
$D_{x}=1.707 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II area-detector diffractometer
ω scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 2001)
$T_{\text {min }}=0.263, T_{\text {max }}=0.502$
10894 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.131$
$S=1.11$
3007 reflections
87 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 7940 reflections
$\theta=3.0-34.8^{\circ}$
$\mu=5.62 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, pale yellow
$0.50 \times 0.20 \times 0.15 \mathrm{~mm}$

3007 independent reflections
2578 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=34.8^{\circ}$
$h=-21 \rightarrow 21$
$k=-20 \rightarrow 20$
$l=-13 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0533 P)^{2}\right. \\
& +7.6558 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=1.25 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.96 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0136 \text { (9) } \\
& \text { Absolute structure: Flack (1983), } \\
& 1313 \text { Friedel pairs } \\
& \text { Flack parameter }=0.01(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 1$	$2.001(7)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.513(6)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.281(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.51(7)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.301(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.515(9)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.480(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.526(7)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.483(6)$		
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{H} 1$	$112(6)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$105.6(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$126.1(4)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$120.3(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$121.9(4)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$119.7(4)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 3$	$112.0(3)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$119.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2$			
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 1$	$-172.1(5)$		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 1$	$1.6(5)$	$\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-21.3(8)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-4.4(7)$	$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$93.2(5)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$176.9(5)$	$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 1$	$163.4(3)$

Symmetry code: (i) $1-x, y, z$.

Table 2
Contact disctances (\AA).

$\mathrm{Br} 2 \cdots \mathrm{Br} 1^{\mathrm{ii}}$	$3.1049(8)$	$\mathrm{Br} 2 \cdots \mathrm{H} 1 A$	2.884
$\mathrm{Br} 2 \cdots \mathrm{C} 1$	$3.201(7)$	$\mathrm{Br} 2 \cdots \mathrm{H} 6 A^{\mathrm{iii}}$	3.027
$\mathrm{Br} 2 \cdots \mathrm{C} 2$	$3.234(4)$	$\mathrm{Br} 2 \cdots \mathrm{H} 6 B$	3.586
$\mathrm{Br} 2 \cdots \mathrm{O} 1$	$3.663(4)$	$\mathrm{Br} 2 \cdots \mathrm{H} 1$	$3.63(12)$
$\mathrm{Br} 2 \cdots \mathrm{~N} 1$	$3.677(4)$		

Symmetry codes: (ii) $x, y, 1+z$; (iii) $x,-y, \frac{1}{2}+z$.

Table 3
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.89(10)$	$1.59(10)$	$2.405(4)$	$149(10)$

Symmetry code: (i) $1-x, y, z$.

All H atoms were initially located in a difference Fourier map. The 0.5 -occupancy hydroxyl H -atom positional parameters were refined freely, along with an isotropic displacement parameter. All other H atoms were placed in geometrically idealized positions with $\mathrm{C}-\mathrm{H}$ distances of $0.99-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$. The largest density peak in the final difference Fourier map is $1.08 \AA$ from Br 2 and is the only residual peak greater than $1 \mathrm{e} \AA^{-3}$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-RED32 (Stoe \& Cie, 2001); data reduction: X-RED32; program(s) used to solve structure: X-STEP32 (Stoe \& Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Malmberg, W. D., Voss, J. \& Weinschneider, S. (1983). Liebigs Ann. Chem. 33, 1694-1711.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2001). X-AREA, X-RED32, X-SHAPE and X-STEP32. Stoe \& Cie, Darmstadt, Germany.
Wilson, J. D. \& Weingarten, H. (1970). Can. J. Chem. 48, 983-986.

